Physics H7C Fall 1999

Solutions to Problem Set 5

Derek Kimball

“Guys, don’t worry about midterms. They’re not the best measure of your worth
as a physicist. In fact, I did rather poorly on my first physics midterm, I got
something like 3 out of 40. Of course, everyone else got 1 out of 40, but that’s not
really the point...”

- Prof. Nima Arkani-Hamed, UC Berkeley

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

Problem 1

(a)
Boundary conditions at the interface (y = 0) between Region 1 and Region 2 imply
there will be EM waves propagating in the Z-direction in both regions. Without
knowing their polarizations just yet, let the electric fields of the waves be given
by:

Elei(klw—wt)

E2€i(kgz—wt) )

(1)

At the interface between Region 1 and Region 2, since the electric and magnetic
field amplitudes in both regions are independent of x and ¢, the only way to satisfy
boundary conditions at all positions and times is if:

pilkiz—wt) _ i(ksz—wt) )
For example, at ¢t = 0, this requires that:

k1 =ks (3)
which means the indices of refraction in the two regions must be the same. Thus

we have,
€1t €2 142
\/ €oM0 \/ €00

(4)
which gives us po = 4pug.

(b)

We have the following boundary conditions at the interface:

€1E5_1) = GgEf)
pHY = po P
B = £}

(1) _ (2)
H"=H, (5)

First let’s see if E can be along §. In this case, from Eqs. (5), we have that:

€1E7§1) = EZEZ(JQ) =
1 2
AE(N = EP

and we also know that for the wave in Region 1:

1 €1 (1
H§>:,/EE§>;s

HL —9 EQE(l)’
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and for the wave in Region 2:

H® = [2E® =
H2
g -1 [ g —g [ g0
2V po o

We see that these relations verify that H §” =H z(2) as demanded by the boundary
conditions in Egs. (5). The relations are consistent, so therefore such a polarization
is allowed.

Can E be along 27 We have from Eqs. (5) that

(®)

EM = E®? 9)

For the wave in Region 1:

(10)

September 30, 1999



Physics H7C Fall 1999

Solutions to Problem Set 5

Derek Kimball

In Region 2:

2) _ [ (2
HZSL,/EE;):s

1 €0
H® = - [0 p01) 11
We see that this verifies the boundary condition on H, from Egs. (5):
mHY = 2\/euoEM =
,LLQH?SQ) = 2\/60/1,0E£1). (12)

So in fact the wave can be in either polarization state.

Problem 2

Reflection at the Brewster angle transmits all TM light and reflects part of the TE
light. The degree of polarization P (for linear polarized light) is given by Fowles
Eq. (2.27):

Imax - Imzn
p = mer  min

1
Ima:v + Imin ( 3)

The light is initially unpolar-
ized, so it is 50% TE and
50% TM. The light transmit-
ted has reduced TE intensity
(since some is reflected at the
interface), but the TM inten-
sity remains the same. Conse-
quently, the transmitted light
is partially polarized:
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Now we can apply the Fowles } TM+TE"

formalism for reflection and Figure 1

transmission of TM and TE waves, using the definitions on page 43 of Fowles:

E/

re = |—
%],
)

bty = | —

° Elrg
7]

Ty = |—

: Elru

From the boundary conditions for E and H at the interface (Eqgs. (5)), we find
some basic relations between the quantities in Egs. (15):

ts=1rs+1

nt, +1p =1 (16)

At the Brewster angle r, = 0, so t, = 1/n. Employing the fact that I oc nE?
(thanks to Paul Wright!), we have for the partial polarization:

1 72 1 (ts—1)?
[ ra — ( S ) (17)
ntZ+t2  nit?+1/n?
Fowles works out the general formulae (Fresnel’s equations) for reflec-

tion/refraction at a plane interface, and in particular for ¢5 we have from Fowles
(2.56):

= 2
If we combine Fowles Eq. (2.64)
tanfp =n (19)
with Snell’s Law
n— %j) (20)
we have the Brewster condition:
0+¢=m/2, (21)
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which follows from the fact that sin ¢ = cosf. Knowing also then from Eq. (21)
that sin (6 + ¢) = 1, we find that:
ty =2cos> 0 (22)
Using the trigonometric identity sec? = tan? +1 and Eq. (19) we find that cos? § =
1/(n?+1) so
2

ty = —— 23
Son2+1 (23)
Plugging Eq. (23) into Eq. (17), with a little algebra, gives us:

14 6n2+nt’

For glass, where n = 1.5, we have that P ~ 12%.

Problem 3

(a)
Note that the Brewster condition (Eq. (21)) is met. Thus from Eq. (19) we have
that n = tan 60° = v/3. Since p = pg, we find that € = 3¢.

(b)
Since the Brewster condition is met, the reflected light is 100% TE. Therefore
reflected light is linearly polarized along .

(c)

The light is initially circularly polarized, so it is an equal superposition of linear
polarizations (TE and TM). Since the TM component has 100% transmission, it
suffices to consider the transverse electric case (E along ) where all reflection

occurs. We have the boundary condition that E) is continuous, so
E;,+ E.=FE,. (25)

Also H| is continuous, and we have for the incident, reflected and transmitted
waves the following components of H in the & direction:

HS) = —F;, /6—0 cos 60°
Ho
H" = E, [ <2 cos 60°
Ho
HO = —Eyy |2 cos30°
Ho

(26)

From which we have the condition:
—-FE;,+ FE, = -3E;. (27)

Adding Eq. (25) to Eq. (27) gives us (E,./E; = 1/2)rg, or (I./I; = 1/4)rg. The
intensity in the TE component is half the initial intensity, so in total I,./I; = 1/8.

Problem 4

Here we treat the tungsten filament as a relatively long straight wire of thickness
s = 0.1 mm. The distance between the filament and an aperture is r. We want
a transverse coherence width [; > 1 mm. Then from Fowles Section 3.7, and in
particular Eq. (3.42), we find that:

A
ltzr—zlmm
s

(28)

If we assume that the tungsten lamp has a central wavelength of 5000 A, then Eq.
(28) demands that r > 200 mm.

If a double-slit aperture is used, the slits should be oriented parallel to the lamp
filament, otherwise the thickness of the wire s would have to be replaced with the
length of the wire, which is naturally much greater than s. This would force r to
be much greater.

Problem 5

The power spectrum of the Gaussian pulse f(¢) is given by G(w) = |g(w)|?, where
in our case g(w) is:

g(w) = \/% /_Z dtexp (—at® + i(w — wo)t) (29)

It is ﬁrstQuseful to derive a result about Gaussian integrals. It turns out that
ffooo e~ dx converges, so let’s set it equal to some constant c¢. Now consider the
integral over the entire plane:

o0 2 o0 2
/ e dx/ e~ W dy = 2. (30)
—0o0 — 00
Next we convert the integral into polar coordinates (r? = z2 + y?).
00 2 2m
/ e " rdr do = 2. (31)
0 0
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Which is relatively straightforward with the substitution v = ar?, du = 2ardr.
From this integral we find that ¢ = 7 /a.

Thus all we need to do is to convert the integral in Eq. (29) to a form resembling
a Gaussian. This can be done by completing the square in the exponent:

NG WO)Q}

—at? +i(w —wo)t = —a {(tZ —2i

=l oo 2_ (w— wp)?
2a 4a

Now the integral in Eq. (29) is just a Gaussian integral, which is no longer a
problem...

(32)

Working through the constants gives us:

A
o) = o exp |00 (33)

G(w) = |g(w)|? is clearly of the same form, and so G(w) is a Gaussian function
centered at wg.

Problem 6

The condition for a fringe maximum to occur is given by Fowles Eq. (4.10):

4
2Nw = TWndCOSH + 0y (34)
Use the small angle approximation:
4 62
ONT = ;nd<1 - 7) + 6, (35)

We are told that the zeroth order fringe (N = 0) has zero radius (.. = 0), so we
have:

5y = —%nd (36)
and subsequently:
4 62

So # o V/N. Since the radius of the fringes r is proportional to 6, it follows
immediately that r oc v/N.

Problem 7

This solution follows directly from the discussion of antireflecting films in Fowles
(page 99). We want to choose the thickness of the film to be %. Then the reflectance

is zero if the index of refraction of the coating n =,/ =.

Problem 8

Fowles Eq. (4.24) states:

Lt L o ) o
no —Ng nr
which is equivalent to:
1 1 , 1
(e ] 3 e L] -
The total E and H just to the right of the right-hand interface are:
Erg = Er
HRH = nTET. (40)
The total E and H just to the left of the left-hand interface are:
Ery = Ey + E|
HLH == noEO - ’I’LOE6 (41)

When the relations in Egs. (40) and (41) are substituted into Eq. (39), we find

-]

Therefore the overall transfer matrix M;,; is merely the product of transfer matri-
ces for the individual films M;. This follows from induction. Suppose there are n
films with transfer matrices My, Mo, ..., M,,. Let the fields to the right of the last
film be E, and H,,. The fields just to the left of the n* film are:

=

{ Eru (42)

Ern ]
Hrp

Hpyg

(43)
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the fields just to the left of the (n-1)** film are:

En72 _ Enfl _ En
o B[]

and so on...

This argument leads to Fowles Eq. (4.28) as stated.
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